Search results for "Neurophysiological Analysis"

showing 2 items of 2 documents

Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of …

2016

During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory inputdriven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during th…

LightPhysiologylcsh:MedicineHippocampusTetrodesMiceAnimal Cells571 PhysiologyMedicine and Health Scienceslcsh:ScienceNeuronsLight PulsesBrain MappingNeuronal PlasticityPyramidal CellsPhysicsElectromagnetic RadiationBrainLaboratory EquipmentSignal Filteringsharp wave ripple eventesBioassays and Physiological AnalysisOptical EquipmentVacuum ApparatusPhysical SciencesEngineering and TechnologyFemaleCellular TypesAnatomyResearch ArticleGanglion CellsArchaeal ProteinsSpatial LearningEquipmentResearch and Analysis Methodsuni (lepotila)AnimalshippokampusCA1 Region HippocampalLaserslcsh:RCorrectionBiology and Life SciencesNeurophysiological AnalysisCell BiologyBrain WavesMice Inbred C57BLOptogeneticsCellular NeuroscienceSignal ProcessingExploratory Behavior570 Life sciences; biologylcsh:QPhysiological ProcessesSleepNeuroscience
researchProduct

Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo

2019

Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dop…

LipopolysaccharidesMaleGene ExpressionStimulationHippocampusBiochemistryStereotaxic Techniques0302 clinical medicineShort ReportsAnimal CellsMedicine and Health SciencesPremovement neuronal activityBiology (General)Routes of AdministrationNeurons0303 health sciencesBrain MappingKainic AcidBrainAnimal ModelsPeripheralCell biologyHaematopoiesisBioassays and Physiological AnalysisExperimental Organism SystemsHippocampus ; Yellow flourescent protein ; Intravenous injections ; Marker genes ; Gene expression ; Neurons ; Microglial cells ; OptogeneticsFemaleCellular TypesSignal TransductionProteasome Endopeptidase ComplexQH301-705.5Yellow Fluorescent ProteinMice TransgenicGlial CellsMouse ModelsStimulus (physiology)BiologyResearch and Analysis Methods03 medical and health sciencesExtracellular VesiclesImmune systemModel OrganismsIn vivoIntravenous InjectionsGeneticsAnimalsddc:610Molecular Biology TechniquesMolecular BiologyMicroglial Cells030304 developmental biologyInflammationPharmacologyMessenger RNABlood CellsUbiquitinDopaminergic NeuronsBiology and Life SciencesProteinsMarker GenesCell BiologyNeurophysiological AnalysisOptogeneticsLuminescent ProteinsCellular NeuroscienceAnimal Studies030217 neurology & neurosurgeryNeuroscience
researchProduct